Online Optimal Controller Design using Evolutionary Algorithm with Convergence Properties

نویسندگان

  • Yousef Alipouri
  • Javad Poshtan
چکیده

Many real-world applications require minimization of a cost function. This function is the criterion that figures out optimally. In the control engineering, this criterion is used in the design of optimal controllers. Cost function optimization has difficulties including calculating gradient function and lack of information about the system and the control loop. In this article, for the first time, gradient memetic evolutionary programming is proposed for minimization of non-convex cost functions that have been defined in control engineering. Moreover, stability and convergence of the proposed algorithm are proved. Besides, it is modified to be used in online optimization. To achieve this, the sign of the gradient function is utilized. For calculating the sign of the gradient, there is no need to know the cost-function’s shape. The gradient functions are estimated by the algorithm. The proposed algorithm is used to design a PI controller for nonlinear benchmark system CSTR (Continuous Stirred Tank Reactor) by online and offline approaches. KEYWORD: Nonlinear Optimal Controller, GMEP (Gradient Memetic Evolutionary Programming), Sign of Gradient Function, Online Optimization, Nonlinear Benchmark CSTR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Optimal Parameters for Finite Plates with a Quasi-Square Hole

This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Power System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach

This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...

متن کامل

OPTIMAL DESIGN OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS USING IMPROVED TIME EVOLUTIONARY OPTIMIZATION

In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under Amer...

متن کامل

An Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems

This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014